
J. Fluid Mech. (1997), vol. 353, pp. 163–195. Printed in the United Kingdom

c© 1997 Cambridge University Press

163

Instabilities in a high-Reynolds-number
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A high-Reynolds-number asymptotic theory is developed for linear instability waves
in a two-dimensional incompressible boundary layer on a flat surface coated with
a thin film of a different fluid. The focus in this study is on the influence of the
film flow on the lower-branch Tollmien–Schlighting waves, and also on the effect of
boundary-layer/potential flow interaction on interfacial instabilities. Accordingly, the
film thickness is assumed to be comparable to the thickness of a viscous sublayer in a
three-tier asymptotic structure of lower-branch Tollmien–Schlichting disturbances. A
fully nonlinear viscous/inviscid interaction formulation is derived, and computational
and analytical solutions for small disturbances are obtained for both Tollmien–
Schlichting and interfacial instabilities for a range of density and viscosity ratios of
the fluids, and for various values of the surface tension coefficient and the Froude
number. It is shown that the interfacial instability contains the fastest growing modes
and an upper-branch neutral point within the chosen flow regime if the film viscosity
is greater than the viscosity of the ambient fluid. For a less viscous film the theory
predicts a lower neutral branch of shorter-scale interfacial waves. The film flow is
found to have a strong effect on the Tollmien–Schlichting instability, the most dramatic
outcome being a powerful destabilization of the flow due to a linear resonance between
growing Tollmien–Schlichting and decaying capillary modes. Increased film viscosity
also destabilizes Tollmien–Schlichting disturbances, with the maximum growth rate
shifted towards shorter waves. Qualitative and quantitative comparisons are made
with experimental observations by Ludwieg & Hornung (1989).

1. Introduction
Laminar boundary layers on aircraft wings and turbine blades or on the walls

of a channel or pipe tend to become unstable at a sufficiently high flow speed.
When the solid flow boundary is coated with a thin film of a different fluid, the film
and the main boundary layer turn into a complex fluid-dynamical system showing
a fascinating pattern of instabilities and nonlinear behaviours, often with dramatic
changes in the flow properties due to the film rupture, the formation of interfacial
waves, droplets and aerosols. All this is in addition to laminar–turbulent transition in
the boundary layer, or in the film, or in both.

Our concern in this paper is with linear instability of boundary-layer flows on
film-coated surfaces such as on a rain-wetted car or airplane wing; related examples
are found in film cooling technologies, in lubricating pipelining, and in visualization
experiments. The characteristic Reynolds number in the flow is assumed to be large,
as is typical in many applications. We use asymptotic analysis to examine the flow
regimes arising when a relatively thin film affects the stability of the main flow and
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vice versa, with the emphasis on the situations where the two flows are strongly
coupled by virtue of the interfacial stress and velocity continuity.

The linear stability problem for a viscous flow along an interface between two
immiscible fluids with different viscosities and densities was introduced by Lock
(1954) and Feldman (1957), the former in the context of water-wave generation by
wind, and the latter for a shear-driven film flow similar to that considered in this
paper; in both cases the flow stability was found to be strongly influenced by the
interface (however, the qualitative conclusions in those papers were later shown to
be impaired by errors in the interfacial conditions). The continuing development of
the instability theory for such flows relies, even today, on analytical and numerical
approaches, some of which will be reviewed here.

At high Reynolds numbers, the flow of a light fluid over a sufficiently thick
coat of a heavier and more viscous substance (as in an air/water combination)
can become unstable to inviscid Rayleigh-type disturbances (Miles 1957; see also
Morland, Saffman & Yuen 1991; Morland & Saffman 1993; Shrira 1993). Dealing
mostly with the problem of water-wave generation by turbulent wind Miles (1959,
1962) and Benjamin (1959) extended the inviscid-flow model by including some of
the viscous effects and hence derived an estimate for the critical Reynolds number
(or the critical wind speed) for the incipient instability. These approximate theories
were compared with accurate numerical solutions for the full viscous formulation
by Valenzuela (1976) and, more recently, by van Gastel, Janssen & Komen (1985)
and Belcher, Harris & Street (1994), who indicate also that the results can be rather
sensitive to the turbulence model used for the mean profiles in air and in water.

For entirely laminar basic flows the choice of the mean profile can be put on a
firmer basis (in theory at least) and the effect of various factors on the flow stability
can be assessed more systematically. The significance of the viscosity difference at
the interface was demonstrated by Yih (1967) in his analysis of a long-wave mode of
viscous instability in a Poiseuille–Couette channel flow. Yih showed that a relatively
thin coat of a more viscous fluid on one of the channel walls renders the flow
unstable at small and O (1) Reynolds numbers, which contrasts with the ultimate
linear stability of Couette flow and the low-Reynolds-number stability of Poiseuille
flow without wall coating. The viscosity difference and hence a slope discontinuity in
the velocity profile also accounts for a short-wave viscous instability present at all
Reynolds numbers, see Hooper & Boyd (1983), and Blennerhassett & Smith (1987).
A short-wave cut-off of such growing modes is usually due to surface tension.

The growth rates of long waves in Yih’s (1967) channel flow are of O
(
k2
)

(where
k � 1 is a non-dimensional disturbance wavenumber) and depend on the fluid densi-
ties and the relative amount of the more viscous fluid, as was demonstrated further by
Blennerhassett (1980), Renardy (1985) and Yantsios & Higgins (1988). The last three
papers also present an extensive computational study in the part of the wavenumber–
Reynolds number parameter plane inaccessible to asymptotic techniques and discuss
the significance of two varieties of growing modes corresponding to the interfacial
and Tollmien–Schlichting (TS) or shearing instability (a possible interplay of the two
modes was noticed earlier by Miles 1962). For the flow regimes chosen by Blennerhas-
sett (1980) the TS waves appear at far larger Reynolds numbers and generally look
much weaker than the interfacial mode. A competition between the two instabilities
is more evident for the channel flows studied in Yantsios & Higgins (1988); it is also
reflected in their comparisons with experiments by Charles & Lilleleht (1965), and
Kao & Park (1972). For flow of the Lock (1954) type Akylas (1982) proposed a linear
TS/interfacial mode resonance as a mechanism of water-wave generation.
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When, in the case of a two-layer channel flow, the thickness of one layer becomes
sufficiently small, the influence of the opposite solid boundary can be neglected
provided that the disturbance wavelength remains comparable to the film thickness.
We arrive then at the stability problem for a linear-profile film driven by a constant-
shear unbounded flow (under certain assumptions the same limiting formulation holds
also for the boundary-layer flows considered in this paper). Owing to the absence
of the second rigid wall the growth rate of Yih’s (1967) long-wave instability in
strongly viscous films changes from O

(
k2
)

to O
(
k4/3
)

at small k, Hooper (1985).
For the same flow Hooper & Boyd (1987) described a new type of high-Reynolds-
number instability when the kinematic viscosity of the unbounded fluid is large. We
emphasize that the constant-shear approximation for the basic-state profile predicts
only interfacial instability which, depending on circumstances, consists of one or
two neutral branches. It is interesting that the most common combination of two
immiscible fluids in nature, namely air and water, turns out to be rather complex,
for the large water density and viscosity support long interfacial waves, whereas the
relatively large kinematic viscosity of air gives rise to a short-wave interfacial mode.
For a thin water layer driven by an air current a useful limiting instability formulation
is that of a liquid film with a free surface (Miles 1960; Smith & Davis 1982). Related
problems have been studied extensively in the context of free-falling or gravity-driven
films on sloping walls; for a recent review see Chang (1994). Some aspects of the
problem were also examined within the high-Reynolds-number asymptotic framework
akin to that in the present paper, in both steady (e.g. Gajjar & Smith 1983; Gajjar
1987; Bowles & Smith 1992; Bowles 1995) and unsteady (e.g. Mahmudov & Terent’ev
1988; Brotherton-Ratcliffe & Smith 1989; Bagbekov & Terent’ev 1991; Hoyle &
Smith 1994) formulations. Subtle differences between the purely free-surface and the
limiting shear-driven flows are discussed by Miesen & Boersma (1995). As a separate,
but potentially related and extremely interesting application, we should also mention
problems involving the film formation due to condensation, for example on inclined
cold walls placed in a saturated vapour stream; see Beckett & Poots (1972), Howarth,
Poots & Wynne (1978), Shu & Wilks (1995).

The linear stability analysis reported in this paper is a part of research directed
eventually at weakly and strongly nonlinear theoretical modelling of transitional
boundary layers on wave-supporting liquid coatings. This determines the use of
a high-Reynolds number approach and the specific scalings assumed in the flow.
Since the boundary-layer flow, whether on a solid or film-coated surface, is generally
non-parallel the use of a parallel-flow Orr–Sommerfeld approximation (and of the
classical Heisenberg–Tollmien type of asymptotic analysis; see e.g. Lin 1955) becomes
particularly vulnerable from a theoretical standpoint (this does not diminish their
value in certain, for instance engineering, applications). What is more important is that
when taken into nonlinear regimes, such essentially finite-Reynolds-number theories
come across severe mathematical difficulties which almost invariably overshadow the
underlying physics. An alternative adopted in this study is a multi-deck analysis
developed by Neiland (1969), Stewartson & Williams (1969) and Messiter (1970) for
application to flow separation and widely used in instability theory since the work
of Smith (1979a,b) in the West and Zhuk & Ryzhov (1980) in Russia. Subsequent
developments in this area are summarized in the review articles by, e.g., Stewartson
(1974), Smith (1982), Messiter (1983), and Cowley & Wu (1993).

The multi-deck approach is less demanding on the computational side and hence
leads to tractable formulations even in multi-parameter problems like the one con-
sidered in this paper. In practical terms it often produces amazingly accurate results
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at realistic Reynolds numbers; see for example recent comparisons by Smith &
Bowles (1992), Stewart & Smith (1992), Hultgren (1992), and Healey (1995). One
should be fully aware of limitations of the multi-deck theory stemming from the fact
that certain properties of the instability spectrum at finite Reynolds numbers can
be quite different from their high-Reynolds-number counterparts, both qualitatively
and quantitatively (see, e.g., Healey 1995; Timoshin 1996). Clearly a joint effort with
computationalists and experimentalists is required to produce a physically sensible
and formally acceptable theory. The analysis in this paper focuses on the asymptotic
flow properties.

In a flat-plate boundary layer without coating the most amplified TS disturbances
appear near the lower neutral branch; see, e.g., Ryzhov & Terent’ev (1986). The
wavelength and time scale for such waves are of order Re−3/8 and Re−1/4 respectively
(in terms of the Reynolds number Re and non-dimensional variables based on the
global parameters specified below in §2). One of the dynamically active elements
of the TS-wave structure is a near-wall viscous layer of non-dimensional thick-
ness O

(
Re−5/8

)
. The disturbance viscous layer is therefore much thinner than the

O
(
Re−1/2

)
main boundary layer. The lower-branch TS waves are slow, their phase

speed is an O
(
Re−1/8

)
fraction of the free-stream velocity. In order to examine the

effect of a wall coating on the TS instability we shall assume the film and the TS-wave
viscous layer to be of comparable thickness (the assumption seems appropriate since
sufficiently far away from the region of film generation the film becomes asymptoti-
cally thin compared to the boundary layer; see Nelson, Alving & Joseph 1995). The
equations derived on this basis are found to describe both the TS waves of the main
boundary layer modified by the film and interfacial waves. The interfacial modes
covered by the model are of two kinds: long waves propagating somewhat faster than
the unperturbed interface (as in Yih 1967), and shorter-scale disturbances travelling
slower than the interface (as in Hooper & Boyd 1987). We examine how these waves
are affected by the viscous/inviscid interaction in the main boundary layer.

A related triple-deck approach is being developed by Tsao, Rothmayer & Ruban
(1997) with application to the airplane de-icing technology (for an earlier study on the
subject see, e.g., Yih 1990). The crucial simplifying assumption used in that work is the
extremely large viscosity and density of the de-icing liquid. This leads to a somewhat
simpler viscous/inviscid interaction problem, with the TS instability excluded from
analysis.

The plan of the paper is as follows. In §2 the flow geometry is introduced and the
equations of viscous/inviscid interaction in a two-fluid flow are derived for the general
case of nonlinear disturbances. In §3 the interaction equations are linearized and solved
for the TS and interfacial temporal instability modes in a range of flow parameters.
Viscosity and density variation at the interface as well as gravity and surface tension
are found to have a profound effect on both modes. For example, contrary to intuitive
expectations, a specific choice of the interfacial surface tension proves to be a powerful
destabilizing factor for the TS waves. An analysis of various limiting situations is
presented in §§4 and 5. In §4 properties of short-wave instabilities are considered for
O (1) parameters of the two fluids. In §§4.2, 4.3 the TS-wave destabilization by surface
tension is described analytically in terms of linear interaction between growing TS
and decaying interfacial waves. In §4.4 the short-wave interfacial instability arising in
the case of negligible surface tension and a less viscous fluid in the film is shown to
be linked with the mode identified by Hooper & Boyd (1987). Section 5 is specifically
devoted to flows with increased film viscosity. It is shown that viscous/inviscid
interaction alters the known long-wave instability properties, the growth rate being
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Figure 1. A sketch illustrating the unperturbed boundary layer and film in the asymptotic
structure of the interaction region.

reduced from O
(
k2
)

in Yih (1967) and O
(
k4/3
)

in Hooper (1985) to O
(
k8/3
)

when
the wavenumber k is small. Interfacial instability on very viscous films for O (1)
and increased wavenumbers is studied in §§5.2 and 5.3, respectively, whereas the
effect of higher film viscosity on the TS waves is considered in §5.4. A discussion
and comparisons with experimental observations by Ludwieg & Hornung (1989) are
given in §6.

2. Derivation of the viscous/inviscid interaction equations
We consider laminar boundary-layer flow on a horizontal flat plate coated with a

thin film of fluid different from and immiscible with the ambient fluid in the boundary
layer; see figure 1. The Cartesian coordinates along and normal to the plate with
the origin at the leading edge are denoted as L∗x, L∗y, the corresponding velocity
components are U∗u,U∗v, and the time is L∗U

−1
∗ t, using the typical free-stream speed

U∗ and the development length of the boundary layer L∗ as reference quantities. The
variable part of the pressure function is ρ∗U

2
∗p
±, ρ∗ being the density of the main

fluid. In what follows the sign convention is used to distinguish between the flow
in the boundary layer (plus) and in the film (minus). The non-dimensional densities
and kinematic viscosities of the two fluids referred to the corresponding dimensional
parameters ρ∗, ν∗ of the boundary layer are denoted as ρ±, ν±.

The non-dimensional Navier–Stokes equations can be written in the form

∂U±

∂t
+
(
U± · ∇

)
U±= − 1

ρ±
∇p± − j

Fr
+

1

Re
ν±∇2U±, ∇ ·U± = 0, (2.1)

where U± =
(
u±, v±

)
is the vector velocity, j denotes a unit vector in the vertical

direction, and Re = U∗L∗ν
−1
∗ , Fr = U2

∗ (g∗L∗)
−1 are the Reynolds and the Froude

numbers respectively, g∗ being the gravitational acceleration.
The non-dimensionalization above implies that ρ+ = ν+ = 1; however in the

analysis in this section it is convenient to retain symbolic notation for the upper-fluid
parameters.

As indicated in §1, the perturbed motion at a chosen x-station (in what follows at
x = 1 without loss of generality) is assumed to have the streamwise and temporal
scales of the same order of magnitude as the lower-branch TS instability. At large
values of the Reynolds number these are

x− 1 = O
(
ε30
)
, t = O

(
ε20
)
, (2.2)

where ε0=Re
−1/8 is the main small parameter of a three-tier disturbance structure
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which includes a viscous sublayer of thickness y = O
(
ε50
)
, the bulk of the boundary

layer with y = O
(
ε40
)
, and the outer potential-flow zone y = O

(
ε30
)
. The interface

between two fluids passing through the lower tier can therefore be described by

yint = ε50f

(
x,
x− 1

ε30
,
t

ε20

)
+ . . . , (2.3)

keeping in mind that in the unperturbed state the fast x- and t-dependence vanishes,
so that (2.3) reduces to yint = ε50f (x) + . . . .

At the interface the velocities and the tangential stress must be continuous, whereas
the normal-stress condition in the current thin-film geometry simplifies to a pressure-
jump discontinuity, namely

p+ − p− = γ
∂2yint

∂x2
at y = yint, (2.4)

with γ = γ∗/
(
L∗ρ∗U

2
∗
)

being a non-dimensional representation of the surface tension
coefficient γ∗.

To introduce the appropriate scalings for the Froude number and for the surface
tension coefficient, we notice that the pressure variation induced by local changes in
the interface position is of order ∂yint/∂x = O

(
ε20
)
. Then the pressure differences due

to buoyancy forces, ∆p± = O
(
yint/Fr

)
= O

(
ε50/Fr

)
, and the pressure jump in (2.4)

will both enter the triple-deck formulation provided that

Fr = ε30Fr0, γ = ε30γ0, (2.5)

with Fr0 and γ0 regarded as O (1) parameters.

2.1. The unperturbed boundary layer and film

Since the main concern of this work is the properties of fully developed flows we
ignore the details of how the film is produced. This will be a reasonable approximation
at a certain distance from for example the front contact line of an oil patch on a
plate, the approximation being better for thinner films. Then the steady boundary
layer unaffected by instabilities can be treated as predominantly independent of the
film flow; see e.g. Nelson et al. (1995). In the bulk of the boundary layer, where the
vertical coordinate y1 = yε−4

0 is of O (1), the velocity components and pressure can be
written in the form

u+ = Û+
0 (x, y1) + ε0Û

+
1 (x, y1) + O

(
ε20
)
, (2.6)

v+ = ε40

[
V̂+

0 (x, y1) + ε0V̂
+
1 (x, y1) + O

(
ε20
)]
, (2.7)

p+ = P̂+
0 (x)− ε0y1ρ

+/Fr0 + O
(
ε40
)
. (2.8)

Here the main-order velocities Û+
0 , V̂

+
0 represent the usual single-fluid boundary layer

under a specified external pressure P̂+
0 (x). In the case of a uniform outer stream,

for example, we have P̂+
0 ≡ const, so that the solution for Û+

0 , V̂
+
0 can be expressed

in terms of the Blasius streamfunction. The O (ε0) velocity corrections in (2.6), (2.7)
are then governed by linearized boundary-layer equations without pressure forcing
and also with the trivial outer-edge condition Û+

1 → 0 as y1 → ∞, but with a non-

vanishing slip velocity at the wall, Û+
1 (x, 0) = Ûs (x) say. The slip effect is due to the

presence of the film where the flow is driven by the shear stress in the lower part of
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the main boundary layer. In the film we define Y = yε−5
0 to be of O (1) and expand

the flow functions in the form

u− = ε0Û
−
0 (x, Y ) + O

(
ε20
)
, v− = ε60V̂

−
0 (x, Y ) + O

(
ε70
)
, (2.9)

p− = P̂+
0 (x) + O

(
ε20
)
, (2.10)

with the immediate result

Û−0 = λ̂+ (x)Y ρ+ν+/
(
ρ−ν−

)
, V̂−0 = − 1

2
[λ̂+ (x)]′Y 2ρ+ν+/

(
ρ−ν−

)
, (2.11)

for the main-order velocities. Here λ̂+ (x) = ∂Û+
0 /∂y1 (y1 = 0) is the wall shear in the

boundary layer, and the prime designates the derivative. The solution (2.11) satisfies
the tangential-stress continuity at the interface at Y = f (x). The continuity of the
streamwise velocity then yields

Ûs (x) = λ̂+f
[
1− ρ+ν+/

(
ρ−ν−

)]
, (2.12)

with the shape of the interface f (x) determined by λ̂+f2 = const, as follows from the
mass conservation within the film; cf. Nelson et al. (1995).

2.2. Equations of viscous/inviscid interaction

For the flow within the interaction region shown in figure 1 the appropriate local
variables are the shorter-scale coordinate X = (x− 1) ε−3

0 and the fast time T = tε−2
0 ,

with X and T of O (1), so that the interface position is written as yint = ε50F (X,T )+. . .,
cf. (2.3). In the main part of the boundary layer, y1 = O (1), the perturbed-flow
expansions of the form

u+ = U00 (y1) + ε0
[
A (X,T )U ′00 +U01 (y1)

]
+ . . . , v+ = ε20

[
− ∂A
∂X

U00

]
+ . . . , (2.13)

p+ = P00 − ε0y1ρ
+/Fr0 + ε20P

+ (X,T ) + . . . , (2.14)

hold, similar to the usual triple-deck solution but with the extra contribution U01 in
the horizontal velocity and, more significantly for buoyant fluids, with the vertical
pressure variation of order ε0. The unknown displacement function A and the pressure
term P+ are linked via the standard principal-value integral,

P+ = ρ+[U00 (∞)]2 1

π

∫ ∞
−∞

∂A(s, T )

∂s

ds

X − s , (2.15)

as follows from the potential-flow requirements in the uppermost part of the interac-
tion region. The pressure constant P00 and the velocity terms U00, U01 in (2.13), (2.14)
are determined in principle by the flow upstream, in particular U00 = Û+

0 (1, y1) , U01 =

Û+
1 (1, y1) , P00 = P̂+

0 (1). The crucial viscous effects are accumulated in a thin near-wall
zone where

u± = ε0U
±(X,Y , T ) + . . . , v± = ε30V

±(X,Y , T ) + . . . , (2.16)

p± = P00 + ε20
[
−Y ρ±/Fr0 + P± (X,T )

]
+ . . . with Y = ε−5

0 y = O (1) . (2.17)

On substituting into (2.1), the leading terms here are governed by the equations,

∂U±

∂T
+U±

∂U±

∂X
+ V±

∂U±

∂Y
= − 1

ρ±
∂P±

∂X
+ ν±

∂2U±

∂Y 2
, (2.18)
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∂U±

∂X
+
∂V±

∂Y
= 0. (2.19)

The flow in the film must satisfy the no-penetration and no-slip conditions,

U− = V− = 0 at Y = 0, (2.20)

whereas the match with the potential-flow zone across the main part of the boundary
layer provides the conditions for the flow above the interface, namely

U+ = λ+ (Y + A) +Us + o (1) , V+ = −λ+Y
∂A

∂X
+ O (1) as Y →∞, (2.21)

where Us is a constant, Us = Ûs (1) = U01 (0), see (2.12), (2.13). The remaining
boundary conditions are formulated as the velocity and tangential-stress continuity
at the interface,

U+ = U−, V+ = V− =
∂F

∂T
+U±

∂F

∂X
, (2.22)

ρ+ν+ ∂U
+

∂Y
= ρ−ν−

∂U−

∂Y
at Y = F (X,T ) , (2.23)

with the interfacial kinematic condition also included in (2.22). The unperturbed-flow
velocities are given by

U+ = λ+Y +Us if Y > a, U− = λ−Y if 0 < Y < a, V± = 0, (2.24)

where a = f (1) = const is the scaled local film thickness in the base flow, and

λ+ = λ̂+ (1) , λ− = λ+ρ+ν+/ (ρ−ν−), see (2.11). The pressure-displacement relation
(2.15) together with the pressure jump,

P+ − P− = γ0

∂2F

∂X2
+
ρ+ − ρ−
Fr0

F, (2.25)

complete the boundary-value formulation for the flow in the interaction region.
The change of variables,[

X,Y , T ,U±, V±, P±, a, F, γ0, Fr0
]
→
[
α3λ+X, αY , α2T , αλ+U±, α−1V±,

α2
(
λ+
)2
P±, αa, αF, α7

(
λ+
)4
γ0, α

−1
(
λ+
)−2

Fr0

]
, (2.26)

with α = [U00 (∞)]1/2
(
λ+
)−3/4

indicates that two parameters, U00 (∞) and λ+, can be
taken equal to unity without loss of generality. We also recall that ρ+ = ν+ = 1
according to the non-dimensionalization. Hence the interaction formulation is left
with five scaled parameters: the viscosity and density of the film fluid ρ− and ν−, the
initial film thickness a, and the surface tension and gravity constants γ0 and Fr0. In
the following sections we consider a linearized version of the problem.

3. Linear stability problem
Disturbances to the basic-state flow (2.24) with a small typical amplitude δ � 1 are

taken in the normal-mode form,

U± = u00 + λ±Ȳ + δEū±
(
Ȳ
)

+ . . . , V± = δEv̄±
(
Ȳ
)

+ . . . , (3.1)[
P±, F, A

]
= [0, a, 0] + δE

[
p̄±, f̄, Ā

]
+ . . . , (3.2)
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where E = exp [i (kX − ωT )], the wavenumber k is real, the frequency ω = ωr +iωi is
in general complex, and the disturbance is said to be unstable if the imaginary part ωi
is positive. The new vertical coordinate Ȳ = Y − a measured from the unperturbed
interface is introduced for convenience, so that the boundary-layer part of the flow
and the film occupy the regions Ȳ > 0 and −a 6 Ȳ 6 0 in turn. Also u00 = aλ− is
the basic-state interfacial velocity.

On substituting (3.1), (3.2) into (2.15), (2.18)–(2.25) and taking U00 (∞) = λ+ =
ρ+ = ν+ = 1, the governing formulation acquires the form

i
(
kȲ + ku00 − ω

)
ū+ + v̄+ = −ikp̄+ + ū+′′, ikū+ + v̄+′ = 0, (3.3)

ū+ (∞) = Ā, p̄+ = |k|Ā, (3.4)

i
(
kλ−Ȳ + ku00 − ω

)
ū− + λ−v̄− = − ik

ρ−
p̄− + ν−ū−′′, ikū− + v̄−′ = 0, (3.5)

ū− (−a) = v̄− (−a) = 0, (3.6)

p̄+ − p̄− = −
[
γ0k

2 +
ρ− − 1

Fr0

]
f̄, v̄± (0) = i (ku00 − ω) f̄, (3.7)(

1− λ−
)
f̄ + ū+ (0)− ū− (0) = 0, ū+′ (0) = ρ−ν−ū−′ (0) . (3.8)

The relations (3.3)–(3.8) form an eigenvalue problem for the disturbance frequency in
terms of the wavenumber and the parameters γ0, Fr0, a, ρ

−, ν−. The interfacial velocity
and the shear in the film can be expressed through the other parameters as u00 = aλ−

and λ− = 1/ (ρ−ν−), respectively.

3.1. Numerical solutions of the eigenvalue problem

Computational solutions of (3.3)–(3.8) were obtained with the use of a numerical
method described in the Appendix. For ease of reference the results are divided into
three groups.

(i) Equal densities, no surface tension. If γ0 = 0, ρ− = 1 and the unperturbed film
thickness is fixed (a = 1 for the solutions illustrated below), then in addition to the
variable wavenumber the only free parameter is the kinematic viscosity of the lower
fluid ν− or, equivalently, the shear λ− = 1/ν−. Such an artificial flow model provides
a good starting example for identifying the key instabilities associated with the TS
mechanism and with the presence of the interface, cf. Yih (1967), Hooper & Boyd
(1983, 1987).

Figure 2(a,b) illustrates the effect of film viscosity on the TS instability which is
characterized conventionally by a finite-limit growth rate, ωi = O (1), and linearly
increasing phase speed, cr(= ωr/k) = O

(
|k|
)

for short waves with k � 1. The
solution with λ− = 1 (corresponding to a homogeneous fluid) has the limit properties
ωi = 1/

√
2 + . . . , cr = |k| + . . ., as k → ∞, see e.g. Ryzhov & Terent’ev (1986) and

Smith (1986). Increased viscosity of the film fluid (ν− > 1, λ− < 1) results in stronger
instability for shorter waves. The trends in figure 2(a) suggest that the constant in
the limit growth rate as k →∞ varies with ν− monotonically, with larger limit values
for more viscous films. For a fixed wavenumber k, however, the complex frequency of
a TS-type disturbance rolling over an extremely viscous film proves to be exactly the
same as in the flow without a viscosity difference, see figure 2(c). The last property is
not entirely unexpected, for the interfacial conditions in (3.7), (3.8) show that ū−, v̄−

and p̄−, together with λ−, are all quantities of order 1/ν− when ν− → ∞, hence in
the limit ν− → ∞, k = O (1) the disturbance frequency is determined by (3.3), (3.4)
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Figure 2. Numerical solutions of (3.3)–(3.8) for the TS and interfacial modes in the case of fluids
of equal density and without surface tension, ρ− = 1, Fr0 = ∞, γ0 = 0, and with a = 1. (a, b) The
growth rate ωi and the real part of the phase speed cr of the TS instability versus k for variable
λ− = 1/ν−; (c) ωi (solid) and ωr (dotted) versus ν− for two selected wavenumbers k = 1.25 and
k = 2, the horizontal dashed lines show the corresponding growth rates at ν− = 1; (d, e) ωi and cr of
the TS waves versus k for small wavenumbers and decreased film viscosity; ( f, g) ωi and cr versus k
for the short-wave interfacial mode in the case of smaller film viscosity, the dots show the asymptote
(4.46) and the dashes the same asymptote but shifted up by a constant; (h, i ) ωi and cr versus k
for the long-wave interfacial mode in the flow with more viscous film fluid; ( j ) the long-wave limit
behaviour of the interfacial mode in the case λ− = 0.2. The dots show the asymptotic growth rates
(5.8).

with the constraints ū+ (0) = v̄+ (0) = 0 at the effectively ‘solid’ interface at y = 0.
The diverse behaviour of the limit solutions when ν− → ∞ for k = O (1) and when
k → ∞ for an O (1) viscosity ν− indicates that faster growing instability develops
at increased wavenumbers when the film is very viscous, see for example the curve
marked λ− = 0.1 in figure 2(a). We discuss this property in more detail in §5.4.

In the case of smaller film viscosity (ν− < 1, λ− > 1) the TS waves are strongly
inhibited, the local maximum in ωi (k) becomes smaller and tends to appear at lower
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wavenumbers, whereas the most unstable modes occur as k → ∞. A peculiar feature
illustrated more clearly in figure 2(d,e) is a complete stabilization in a part of the TS
spectrum by a sufficiently low-viscosity film, when λ− & 4, or ν− . 0.25. The phase
speed cr of the ‘detached’ unstable mode at smaller k is an almost linear function of
the wavenumber, see figure 2(e), which indicates a predominantly inviscid character
of the disturbances.

Along with the TS modes associated primarily with the shearing motion in the
main boundary layer the flow is also subject to interfacial instabilities. Figure 2( f,g)
illustrates the interfacial mode for a less viscous fluid in the film. An analysis in
§4.4 below shows that this short-wave mode which has no global maximum of the
growth rate in the current regime (unless surface tension is included, see later in this
section) is related to the instability described in Hooper & Boyd (1987). A graphical
comparison with the short-wave asymptote is made in figure 2( f ). The approach to
the square-root limiting form given by (4.46) of §4.4 is seen to be slow, probably on
account of the local growth-rate maximum occupying a considerable portion of the
spectrum, and a better agreement with the asymptotic solution can be achieved by
including an O (1) correction term, as also shown in the figure. A similar maximum
was also noted for some other combinations of the film parameters; the results for
other cases will be presented in a separate paper. The flow regime at hand provides
the lower neutral branch for such waves and therefore may prove significant for
the wave formation in a non-parallel spatially-developing flow (by analogy with the
TS instability in boundary layers); however the major events involving this kind of
instability are likely to be concentrated in the range of much shorter disturbances
(again if surface tension is negligibly small).

When the film viscosity exceeds the viscosity of the main current the interfacial
mode arises in a long-wave range, see figure 2(h,i ), although the growth rate maximum
and the unstable k-range both gradually increase for greater values of ν−. For this
mode the present theory predicts the position of the upper neutral branch. A close-up
in figure 2( j ) of a small-k interval for one such solution leaves little doubt that the
instability persists for arbitrarily long waves (within the triple-deck scaling), with the
phase speed approaching the interfacial velocity from above, cr → u00+, and ωi → 0 in
the limit when k → 0 (note that u00 = aλ− = 0.2 for the case illustrated in the figure).

(ii) Unequal densities in stable stratification, no surface tension. Even at infinitely
large Froude numbers the interfacial density difference may have a considerable im-
pact on the instability properties by altering the dynamic viscosity of the film fluid
and changing the convection/pressure balance in the momentum equations. It seems
more appropriate, however, to examine the density effects in conjunction with gravity.
Numerical solutions in figure 3(a,b) illustrate the effect of increased gravity on the TS
instability. The density and viscosity of the film are fixed at moderate values ν− = ρ− =
2. As the Froude number decreases the growth rate maximum is shifted towards larger
k; however extremely short waves remain mostly unaffected by gravity. The depen-
dence of the real phase speed on the Froude number is less pronounced, see figure 3(b).

If, alternatively, the Froude number and kinematic viscosity of the film are kept
constant and the density of the lower fluid increases, the growth-rate diagram tends to
return to the single-fluid solution, see figure 3(c), obviously due to the ‘solidification’
of the interface similar to the effect of high film viscosity in the previous item.

The effect of the Froude number and density variations on interfacial waves will
be examined analytically in a subsequent section.

(iii) The effect of surface tension. Surface tension has a strong, non-monotonic,
and at first sight a rather unexpected effect on the TS instability, especially in the
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parameters are a = 1, ν− = 2, Fr−1

0 = 20, γ0 = 0.

short-wave range (the influence on longer waves is weak for obvious reasons), see
figure 4(a,b). Contrary to the commonly observed short-wave stabilization (as, for
instance, in the case of Kelvin–Helmholtz modes) short TS waves with large k
prove to be less stable when surface tension is included. For the flow illustrated in
figure 4(a,b) the asymptotic growth-rate at large wavenumbers grows monotonically
when γ0 increases from 0 to a critical value γ0 = γc (= 2 in this particular example).
At the critical value γ0 = γc the growth rate of short waves becomes unbounded.
However at supercritical values γ0 > γc the growth-rate distribution returns to its
usual shape with a finite plateau at infinity. The behaviour of the real part of the
phase speed in figure 4(b) indicates the asymptote, cr = k + . . ., at large positive k
regardless of surface tension, although the correction to the first linear term seems to
have a non-monotonic dependence on γ0. An asymptotic solution developed below
in §4.3 indicates that at the critical value γ0 = 2 the limiting growth rate is given by
ω = 2k3/2 +O (k), when k →∞. A comparison with this result is shown in figure 4(c).
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A short-wave interfacial instability arises when the film is less viscous than the main
fluid, as discussed earlier in this section. Surface tension has a powerful stabilizing
influence on such waves, see figure 4(d ). The effect of surface tension on long-wave
instability in more viscous films will be discussed in §5.

4. Asymptotic properties of short-wave instabilities
In this section the eigenvalue problem (3.3)–(3.8) is solved analytically for large

values of the disturbance wavenumber k.

4.1. Short-wave TS instability

Consider first the TS instability with large wavenumbers. To begin with, all the flow
parameters (except k) in the starting formulation are assumed to be of O (1), and the
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disturbance wavenumber and frequency are taken in the form

k = ε−1k0, ω = ε−2ω0 + ε−1ω1 + ω2 + . . . , (4.1)

where ε is an artificial small parameter and k0 = O (1). The shortened streamwise
length scale implies a predominantly inviscid perturbed motion except in thin near-
wall and interfacial viscous layers. In the flow above the interface the appropriate
variable is Ỹ = εȲ = O (1), and then the flow functions expand in the form[

ū+, Ā
]

=
[
u+

0 , A0

]
+ ε
[
u+

1 , A1

]
+ ε2

[
u+

2 , A2

]
+ . . . , (4.2)

v̄+ = ε−2v+
0 + ε−1v+

1 + v+
2 + . . . , p̄+ = ε−1p+

0 + p+
1 + εp+

2 + . . . , (4.3)

where, to satisfy the governing equations and the conditions at infinity, we take

u+
0 = A0, v+

0 = −ik0A0Ỹ , p+
0 = |k0|A0, (4.4)

u+
1 = A1, v+

1 = −ik0A1Ỹ − i (k0u00 − ω1)A0, p+
1 = |k0|A1, (4.5)

u+
2 = A2, v+

2 = −ik0A2Ỹ + iω2A0 − i (k0u00 − ω1)A1, p+
2 = |k0|A. (4.6)

The main-order momentum balance also provides the leading disturbance frequency,

ω0 = k0|k0|. (4.7)

In the film (−a < Ȳ < 0, Ȳ ∼ 1) we have

[ū−, v̄−] =
[
u−0 , ε

−1v−0
]

+
[
εu−1 , v

−
1

]
+ . . . ,

u−0 =
k0

ω0ρ−
p−0 , u−1 =

k0

ω0ρ−

[
p−1 −

ω1

ω0

p−0

]
, v−0 = − ik2

0

ω0ρ−

(
Ȳ + a

)
p−0 ,

v−1 = − ik2
0

ω0ρ−

(
Ȳ + a

) [
p−1 −

ω1

ω0

p−0

]
+ vw,


(4.8)

f̄ = εf1 + εf2 + . . . , p̄− = ε−1p−0 + p−1 + . . . , (4.9)

where the velocity components have been expressed in terms of the pressure contri-
butions, and the constant of integration vw is included on account of the near-wall
viscous (Stokes) layer. The conventional oscillatory-flow result for the latter can be
written as

vw = ik2
0p
−
0

(
ω0ρ

−{−
)−1

, where {− =
(
−iω0/ν

−)1/2
, | arg {−| < π/2. (4.10)

In a single-fluid flow the Stokes displacement vw provides the key instability mechanism
for short TS waves away from the lower neutral branch. In the two-fluid flow an
additional displacement of a comparable order of magnitude is produced also in
viscous layers on both sides of the interface, where Ȳ = εη and η is of O (1). For the
leading terms in the interfacial layers we have

ū± = Ũ±0 (η) + . . . , v̄± = ε−1v−0 (0) + Ṽ±0 (η) + . . . , p̄± = ε−1p±0 + . . . , (4.11)

Ũ±0 =
k0p

±
0

ω0ρ±

[
1− exp

(
∓{±η

)]
+ D exp

(
∓{±η

)
, (4.12)

Ṽ±0 = − ik2
0p
±
0

ω0ρ±

[
η ∓ 1

{±
(
1− exp

(
∓{±η

))]
± ik0

{±
D
(
exp

(
∓{±η

)
− 1
)

+ D1, (4.13)
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with {± =
(
−iω0/ν

±)1/2
, | arg

(
{±
)
| < π/2, and

D = k0ω
−1
0

(
ν+{+p+

0 + ν−{−p−0
) (
ν+{+ρ+ + ν−{−ρ−

)−1
. (4.14)

The parameters ρ+, ν+ retained here for convenience will be set equal to unity in the
final relations.

Matching the effectively inviscid-flow solutions (4.2), (4.3) and (4.8), (4.9) across the
interfacial layers and the use of the kinematic and pressure-jump conditions allows us
to express the shape corrections in (4.9) as well as the film-flow pressure terms p−0 , p

−
1

and the constant of integration D1 in (4.13) in terms of the upper-flow displacement
A0. In addition, the frequency corrections are determined from the problem solvability
in the successive approximations. So, omitting further details, the first frequency term
ω1 is found to be purely real,

ω1 = k0u00 − ak0

(
ρ− − γ0a

)−1
, (4.15)

whereas the disturbance growth rate ω2i = Im (ω2) can be written in the form

ω2i =
1√
2

(
1 +

γ0a

ρ−S

)[
1 + 2

(ν−)1/2

Sρ−
−
(

1 +
(
ν−
)1/2
) 1 + S−1 (ν−)1/2

1 + ρ− (ν−)1/2

]

− 1√
2

γ0a

ρ−S

(
1− 1 + S−1 (ν−)1/2

1 + ρ− (ν−)1/2

)
with S = 1− γ0a

ρ−
. (4.16)

This formula simplifies considerably if surface tension can be neglected (either because
γ0 = 0, or if the film is very thin, a � 1). Then

ω2i =
1√
2

[
1 + (ρ− − 1)2

]
(ν−)1/2 + ρ−ν−

ρ−
(
1 + ρ− (ν−)1/2

) . (4.17)

The right-hand side of (4.17) is always positive, hence instability persists for any
combination of the film viscosity and density. Stronger instability is obtained if ρ−

is small, for then ω2i = (2ν−)1/2 /ρ− + . . . as ρ− → 0, or if ν− is large, because

ω2i = (ν−)1/2 /
(
ρ−
√

2
)

+ . . . as ν− → ∞. The presence of a very dense fluid in the
film results in effective solidification of the interface for these disturbances, hence
ω2i = 1/

√
2 + . . . as ρ− → ∞, whereas a very small film viscosity tends to suppress

short TS waves, ω2i → 0 as ν− → 0. These trends are illustrated further in figure 5(a).
Surface tension changes the growth rates dramatically, as can be seen, for instance,

in a somewhat exotic case of two fluids with equal density and viscosity, ρ− = ν− = 1,
when (4.16) reduces to

ω2i = 2−3/2
(
2 + γ2

0a
2
)

(1− γ0a)
−2 . (4.18)

Here the growth rate becomes infinite if γ0 = a−1. In the more general case given by
(4.16) the unbounded growth rate appears if S = 0, that is when the surface tension
coefficient reaches the critical value γ0 = γc = ρ−/a, as shown in figure 5(b). This is
in agreement with the critical value γc = 2 encountered in the numerical solution in
§3 for ρ− = 2, a = 1 (see figure 4a). The origin of this singularity will become clearer
when we examine the properties of capillary waves with large wavenumbers.

4.2. Short capillary waves

Capillary waves feature increased oscillations in the film compared with the distur-
bance in the main boundary layer. With the same frequency expansion (4.1) as in
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§4.1, the flow functions in the film are now given by

ū− = ε−1u−0 + u−1 + . . . , v̄− = ε−2v−0 + ε−1v−1 + . . . , (4.19)

p̄− = ε−2p−0 + ε−1p−1 + . . . , f̄ = f0 + εf1 + . . . , (4.20)

where for the velocity terms shown explicitly the respective coefficients in (4.8) can
be used. In the upper fluid the layer of thickness O

(
ε−1
)

is important again, with the
same expansions (4.2), (4.3) but with a somewhat different solution,

u+
0 = A0, v+

0 = −ik0Ỹ A0 + i
(
ω0 − k0|k0|

)
A0, p+

0 = |k0|A0, (4.21)

u+
1 = A1, v+

1 = −ik0Ỹ A1 + i
(
ω0 − k0|k0|

)
A1 + i (ω1 − k0u00)A0, p+

1 = |k0|A1. (4.22)

In the interfacial viscous layer (Ȳ = εη, η = O (1)) we obtain

ū± = ε−1Ũ±0 (η) + . . . , v̄± = ε−2v−0 (0) + ε−1Ṽ±0 (η) + . . . , (4.23)

Ṽ+
0 =

ik2
0p
−
0

{+ρ−ω0

ρ− (ν−)1/2

1 + ρ− (ν−)1/2
exp

(
−{+η

)
+ D+, D+ = const, (4.24)

Ṽ−0 = − ik2
0p
−
0

ω0ρ−

[
η − 1

{−
1

1 + ρ− (ν−)1/2
exp

(
{−η

)]
+ D−,

D− = vw −
ik2

0a

ω0ρ−

(
p−1 −

ω1

ω0

p−0

)
with {± =

(
−iω0/ν

±)1/2
.

 (4.25)

The leading-order kinematic and pressure-jump conditions then provide two relations,

− ik2
0a

ω0ρ−
p−0 = −iω0f0, p−0 = γ0k

2
0f0, (4.26)

which show that the main-order frequency of the capillary waves is

ω0 = ±k2
0

(
aγ0/ρ

−)1/2
, (4.27)
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where the sign determines the direction of the wave propagation. The disturbance
decay rate,

ω1i = − (ν−)1/2

23/2

|k0|γ1/4
0

a3/4 (ρ−)1/4

(
1 +

1

1 + ρ− (ν−)1/2

)
, (4.28)

is fixed by the interfacial conditions at the next order.
The calculation leading to (4.28) shows that the capillary-wave decay is affected

by the upper flow via the main-order interface displacement which contributes to the
pressure variation in the main boundary layer and consequently alters the pressure
within the film.

4.3. Resonant amplification of TS waves

The limit solutions for both the TS modes in §4.1 and the damped capillary waves in
§4.2 must be reconsidered when the surface tension coefficient is close to the critical
value γc = ρ−/a. Suppose that γ0 = γc + ε1/2γ1, where γc = ρ−/a and the detuning
parameter γ1 is of O(1). As before, the small parameter ε is related to the value
of the (large) wavenumber, k = ε−1k0, k0 = O (1). The frequency and the film-flow
components expand in the form

ω = ε−2ω0 + ε−3/2ω1 + ε−1ω2 + . . . , ū− = ε−1/2u−0 + u−1 + ε1/2u−2 + . . . , (4.29)

[p̄−, v̄−] = ε−3/2[p−0 , v
−
0 ] + ε−1[p−1 , v

−
1 ] + ε−1/2[p−2 , v

−
2 ] + . . . . (4.30)

The velocities u−0 , v
−
0 and u−1 can be related to the pressure terms using (4.8), whereas

in the solution for v−1 the Stokes-layer contribution must be dropped. The effect of
the Stokes layer is felt at the next order, where we have

v−2 =
ik2

0

{−ω0ρ−
p−0 −

ik2
0

ω0ρ−

(
Ȳ + a

) [
−ω1

ω0

p−1 +

(
ω2

1

ω2
0

− ω2

ω0

)
p−0 + p−2

]
. (4.31)

The upper-flow expansions acquire the form

ū+ = A0 + ε1/2A1 + εA2 + . . . ,

v̄+ = ε−2
(
−ik0A0Ỹ

)
+ ε−3/2

(
−ik0A1Ỹ + iω1A0

)
+ε−1

(
−ik0A2Ỹ + iω1A1 − i (k0u00 − ω2)A0

)
+ . . . ,

p̄+ = ε−1|k0|A0 + ε−1/2|k0|A1 + |k0|A2 + . . . ,

 (4.32)

with Ỹ = εȲ = O (1) and ω0 = k0|k0|. In the expansions for the interfacial boundary
layers,

ū± = ε−1/2Ũ±0 (η) + . . . , v̄± = ε−3/2v−0 (0) + ε−1v−1 (0) + ε−1/2Ṽ±0 (η) + . . . , (4.33)

the crucial terms Ṽ±0 are given by the capillary-wave solution (4.24), (4.25) with D−

replaced by v−2 (0).
To illustrate the matching procedure for the current regime, consider the leading-

order pressure-jump condition, namely

−iω0p
−
0 = k2

0γcv
−
0 (0) . (4.34)

With the value of v−0 (0) found from the leading coefficient in (4.8), this yields

ω2
0 = k4

0γca/ρ
−. (4.35)

The last result will be compatible with the earlier derived formula ω0 = k0|k0| only if
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γc = ρ−/a, as expected. A similar procedure applied at the next approximation leads
then to the quadratic equation

2γcω
2
1 − γ1k

2
0ω1 + k2

0 |k0| = 0, (4.36)

for the first frequency correction ω1 in terms of the detuning parameter γ1. Assuming
a real solution for ω1, the disturbance growth/decay rate,

ω2i =

(
|k0|
ω2

1

− 2
γck

2
0

ω2
0

)−1

Im

(
1

{−

)
k2

0γc

aω0

(
1 +

1

1 + ρ− (ν−)1/2

)
, (4.37)

is found from the higher-order balances. Here Im stands for the imaginary part.
The first frequency correction in (4.36) remains real only for sufficiently strong

detuning. In the range γ2
1 < 8|k0|γc, i.e. when γ0 is close to the critical value γc, the

roots of the quadratic become complex, hence instability with the growth rate ω1i =

|k0| (4γc)−1
(
8|k0|γc − γ2

1

)1/2
emerges. The instability results from the crossing of the real

solutions of (4.36) when |γ1| is large and decreases, one of the solutions being the TS
and the other the capillary-wave frequency correction. A more delicate analysis in the

neighbourhood of the cut-off points γ1c = ±
(
8|k0|γc

)1/2
is required in order to establish

which of the two neutral (at this approximation) modes loses stability; however our
computations in §3 point to the TS wave as being the less stable one. Indeed, when γ1 =

0 the growth rate is found to be ω1i = |2k0|3/2γ−1/2
c , hence in the unscaled form we have

ωi = 1
2

(
2a/ρ−

)1/2 |k|3/2 + O (k) as |k| → ∞. (4.38)

Comparison of (4.38) with computations is shown in figure 4(c).

4.4. The Hooper & Boyd mode

Computations in §3 demonstrate the appearance of strong short-wave instability in
the flow with a less viscous film fluid. Here we shall show that this mode is in
fact related to a high-Reynolds-number long-wave instability of a piecewise profile
examined earlier in Hooper & Boyd (1987). The mode is characterized by a small real
part of the phase speed; in the regimes considered here and in §3 it generally remains
below the interfacial velocity.

The frequency expansion is taken in the form

ω = ε−1ω0 + ε−1/2ω1 + . . . when k = ε−1k0, k0 = O (1) . (4.39)

On setting γ0 = Fr−1
0 = 0, the disturbance in the film expands as

ū− = ε−1u−0 + ε−1/2u−1 + . . . , v̄− = ε−2v−0 + ε−3/2v−1 + . . . , (4.40)

and then the common expansion,

p̄± = ε−1p0 + ε−1/2p1 + . . . (4.41)

holds for the pressure. The leading terms in (4.40) are given in (4.8) with p−0 replaced
by p0. In the next approximation we have

u−1 =
k0

ω0ρ−

(
p1 −

ω1

ω0

p0

)
− i

ω0

λ−vw, (4.42)

v−1 = −ik0

(
Ȳ + a

) [ k0

ω0ρ−

(
p1 −

ω1

ω0

p0

)
− i

ω0

λ−vw

]
+ vw, (4.43)

with vw given by (4.10).
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In the upper part of the flow with Ȳ = O (1) the expansions are

ū+ = A0 + . . . , v̄+ = ε−2(−ik0p0) + ε−3/2(−ik0p1) + . . . . (4.44)

In the interfacial viscous layer the solution of §4.2 can be used, with the conclusion
that the viscous layers do not alter the main-order vertical velocity. Hence the match
between v−0 and the leading term in v̄+ gives

ω0 = k0a/ρ
−. (4.45)

To find the first complex-valued frequency correction matching at the next order is
required. After some algebra we derive the formula

ω1i =
1√
2

(
1− ν−

)( k0

aρ−ν−

)1/2

−
(
k0

aρ−

)1/2
(1− ρ−)2 (ν−)2

(1− ν−)3/2
(

1 + ρ− (ν−)1/2
) . (4.46)

The result of (4.46) is equivalent to the long-wave limit of (3.32c) in Hooper & Boyd
(1987).

A comparison with the full numerical solution is shown in figure 2( f ). According
to (4.39), the estimate for the growth rate is ωi ∼ k1/2 as k → ∞; however a better
agreement is found if we allow a constant vertical shift of the solution curve, thus
implying a next-order correction of O (1) in the limit solution.

5. Instabilities of very viscous films
The interfacial viscosity difference in the case of a more viscous film gives rise to

the long-wave instability illustrated in figures 2(h–j ). The focus in this section is on
limiting properties of this mode, first with respect to small wavenumbers in the flow
with O (1) parameters, extended eventually to highly viscous films for the disturbance
wavenumbers covering the entire unstable spectrum. The limit properties of the TS
modes are considered in §5.4.

5.1. The long-wave interfacial instability

Here we derive a long-wave asymptotic solution for the computational curves in
figures 2(h–j ). Suppose that k = εk0, with ε→ 0 and k0 = O (1). Since in the limit the
disturbance frequency is small, we expect the perturbed motion in the upper fluid to
be viscous and quasi-stationary. This leads to the expansions,

ū+ = A0 + ε4/3ũ+
(
Ỹ
)

+ . . . , v̄+ = ε2/3
(
−ik0A0Ỹ

)
+ ε2ṽ+

(
Ỹ
)

+ . . . , (5.1)

p̄+ = ε|k0|A0 + . . . , (5.2)

ω = εk0u00 + ε8/3ω1 + . . . as ε→ 0, (5.3)

with Ỹ = ε1/3Ȳ of O (1) and the growth rate assumed to be of order ε8/3, as will be
verified a posteriori. The controlling disturbance equations,

ik0Ỹ ũ
+ + ṽ+ = −ik0|k0|A0 + ũ+′′, ik0ũ

+ + ṽ+′ = 0, (5.4)

can be solved, subject to ṽ+ (0) = 0, in terms of the Airy function Ai. The result
required here is that

ũ+′ (0) = (ik0)
2/3 |k0|A0Ai (0)

[
Ai′ (0)

]−1
. (5.5)
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In the film the effect of the pressure gradient is small, hence

ū− = ε5/3A−
(
Ȳ + a

)
+ . . . , v̄− = ε8/3

[
− 1

2
A−ik0

(
Ȳ + a

)2]
+ . . . . (5.6)

The use of the interfacial conditions allows the constant A− to be expressed in terms
of the shear perturbation (5.5) and yields eventually the formula for the frequency
correction,

ω1 =
1− λ−
ρ−ν−

a2

2

Ai (0)

|Ai′ (0) |
(ik0)

2/3 k0|k0|. (5.7)

The imaginary part of ω1 is positive when 1−λ− = 1−(ρ−ν−)−1 > 0, that is instability
results if the dynamic viscosity of the lower fluid is greater than in the main boundary
layer.

Comparison of the asymptotic formula with the full numerical solution is made in
figure 2( j ). For the flow with a = 1, ρ− = 1, ν− = 5, we have λ− = 0.2, u00 = aλ− = 0.2,
hence

cr = ωr/k = 0.2 + . . . , ωi = 0.09503k8/3 + . . . as k → 0 + . (5.8)

Here the first relation shows that the long-wave disturbance is in fact a slowly
growing wave propagating with the basic-state interfacial speed. The growth rate in
(5.7) or (5.8) should be compared with the long-wave formulae ωi = O

(
k2
)

and

ωi = O
(
k4/3
)

obtained in a similar regime but for different flows by Yih (1967)
and Hooper (1985), respectively. The higher power of k in our case is due to the
inviscid potential flow in the upper zone of the interaction region, as reflected in
the coefficient |k0| in (5.7). The effect of viscous/inviscid interaction in the present
long-wave limit is rather weak, for the pressure in the boundary-layer formulation
(5.4) acts as a given function (even though the main-order term A0 is essentially
arbitrary). Nevertheless the specific form of the interaction proves to be significant for
long waves. Note also that surface tension has no effect on the small-k disturbance
unless γ0 is made sufficiently large to affect the shear-stress-dominated flow in the
film.

5.2. Interfacial instability for increased film viscosity

The growth rate curves in figure 2(h) show a distinct maximum of the interfacial
instability shifted towards larger wavenumbers when λ− becomes small. Keeping
in mind applications in which the viscosity ratio is large, we shall now examine
the entire spectrum of the interfacial instability (including the range of maximum
growth rates) on the assumption that ν− → ∞. For simplicity the density of the
lower fluid is taken of O (1), although the final relations are found to be valid in a
wider density range, in accord with the observation in the previous subsection and in
earlier studies that the interfacial mode should be dependent on the dynamic rather
than kinematic viscosity properties (a more complete account of the limit solutions
with large ρ− and ν− will be given in a forthcoming paper, see also Tsao et al.
1997).

Consider first the case ν− � 1 for a finite wavenumber k and parameters a, γ0, Fr0
fixed at O (1). As in §5.1, the boundary-layer part of the disturbance is then governed
by viscous quasi-steady equations, this time in the layer Ȳ = O (1), with the leading-
order terms of the form

[ū+, v̄+, p̄+, Ā] = [u+
0 , v

+
0 , |k|A0, A0] + O

(
1/ν−

)
, ω = ω1/ν

− + . . . . (5.9)

The controlling equations for u+
0 , v

+
0 are as in (5.4) with k0 replaced by k, the crucial
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difference being that now the viscous/inviscid interaction is present at the main
order, as is reflected in the outer-edge condition, u+

0 (∞) = A0. The requirement of
zero vertical velocity on approach to the interface is appropriate here; however the
subsequent match with the film flow shows that in the current regime neither the
streamwise velocity nor the tangential stress at Ȳ = 0 can be chosen in advance.
Therefore we take v+

0 (0) = 0, u+
0 (0) = Q, u+′

0 (0) = L, with the constants Q,L unknown
at the moment. Solving (5.4) with the stated boundary conditions we find two relations
for p+

0 , Q and L, namely

L = − 3Ai(0)(ik)2/3|k|
3|Ai′(0)|+ (ik)1/3|k|

Q, p+
0 =

3|Ai′ (0) ||k|
3|Ai′ (0) |+ (ik)1/3|k|

Q. (5.10)

The film flow at leading order is now driven by a combination of the interfacial
shear stress and pressure, hence[

ū−, v̄−, p̄−, f̄
]

=
[
u−0 /ν

−, v−0 /ν
−, p−0 , f0

]
+ . . . , (5.11)

u−0 =
1

2

ikp−0
ρ−

(
Ȳ + a

)2
+ A−

(
Ȳ + a

)
, (5.12)

v−0 =
1

6

k2p−0
ρ−

(
Ȳ + a

)3 − 1
2
ikA−

(
Ȳ + a

)2
, (5.13)

where the constant A− can be determined using the interfacial conditions. The latter
also supply the formula

ω1 =
ka

ρ−
− ik2a3

3ρ−

(
γ0k

2 +
ρ− − 1

Fr0

)
+

a2

2ρ−
3Ai (0) k|k| (ik)2/3 + 2iak2|k||Ai′ (0) |

3|Ai′ (0) |+ (ik)1/3 |k|
(5.14)

for the disturbance frequency.
The first term in (5.14) corresponds to a neutral wave with the phase speed of

the main flow at the interface. The second term reflects the stabilizing influence of
gravity and the surface tension. The feature not examined in computations in §3
(where the flow with a more viscous fluid in the film was assumed to have Fr0 = ∞)
is the long-wave stabilization due to a stable density stratification. The instability in
(5.14) is contained in the third term. If, for example, k → 0 then the result of §5.1 is
recovered provided that gravity can be neglected. If, on the other hand, Fr−1

0 = γ0 = 0
and the wavenumber is large then instability persists for all k, including the limit as
k →∞ where the asymptotic behaviour,

ω1i = a3
(
2ρ−

)−1 |Ai′ (0) |k5/3 + . . . , k � 1 (5.15)

holds for the growth rate.
According to (5.9) and (5.14), the disturbance growth rate decreases as ν− increases

for a fixed wavenumber k. This trend can be seen in figure 2(h) for the values of k
less than 3 or 4, approximately, when ν− is greater than 4 or 5. In order to be able to
detect the growth-rate reduction on shorter waves a considerably larger film viscosity
is needed (see also a realistic-flow example in the last section of the paper).

5.3. Short interfacial waves

Clearly the increased growth-rate maximum and the ultimate decay of extremely
short waves illustrated in figure 2(h) is not covered by the analysis in the previous
subsection. The appropriate scalings for an alternative limit description required when
both ν− and k are large can be derived from a simple physical argument as follows.
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When k � 1 and the upper-fluid velocity ū+ (but not Ā as in the previous
sections) is taken of O (1), the requirement of the inertia/pressure/viscous shear
balancing in the momentum equation for the disturbance just above the inter-
face indicates that Ȳ ∼ k−1/3, p̄+ ∼ k−1/3. Provided that the interfacial pressure
jump is not excessively large, the last estimate also holds for the pressure in
the film, p̄− ∼ p̄+; therefore velocities of a viscous pressure-driven disturbance in
the film are estimated as ū− ∼ k2/3/(ρ−ν−), v̄− ∼ k5/3/(ρ−ν−), the former from
the momentum equation, and the latter from mass conservation. The tangential
velocity continuity suggests then that f̄ and ū+ must be of the same order of
magnitude, i.e. f̄ = O (1), so that the interfacial kinematic condition approxi-
mated for the lower fluid as v̄− ∼ iωf̄ gives ω ∼ k5/3/(ρ−ν−). The argument
so far follows the instability mechanism examined in §5.2, and in fact the esti-
mate for the wave frequency above is of the form (5.15). Among several factors
which can alter this scheme when the wavelength becomes sufficiently small, the
first one to enter the reckoning proves to be due to temporal variations in the
boundary-layer flow on the upper side of the interface (in addition to the un-
steadiness already present in the interfacial kinematic condition). From the balance
−iωū+ ∼ ∂2ū+/∂Ȳ 2, valid in the viscous layer of thickness Ȳ = O

(
k−1/3

)
it then

follows that ω = O
(
k2/3
)
. The last estimate, compared with the previously de-

rived ω ∼ k5/3/(ρ−ν−), shows that the wavenumber range for the new regime is
k = O (ρ−ν−).

In accord with the estimates above we apply the scaling transformations, k =

ν−k0, Ȳ = (ν−)−1/3 Ỹ , with (Ỹ , k0) of O (1), for the wavenumber and vertical coordi-
nate, and seek the solution for the upper boundary layer in the form[
ū+, v̄+, p̄+

]
=
[
u+

0

(
Ỹ
)
,
(
ν−
)2/3

v+
0

(
Ỹ
)
,
(
ν−
)−1/3

p+
0

]
+ . . . , ω =

(
ν−
)2/3

ω1 + . . . .

(5.16)
The governing equations for the leading terms in (5.16) are(

−iω1 + ik0Ỹ
)
u+

0 + v+
0 = −ik0p

+
0 + u+′′

0 , ik0u
+
0 + v+′

0 = 0. (5.17)

Owing to the decreased wavelength the viscous/inviscid interaction condition for the
upper flow reduces to the zero-displacement requirement, u+

0 → 0 as Ỹ → ∞. As in
§5.2, the tangential slip velocity at the interface continues to play a significant part,
and in addition the interface displacement turns out to be sufficiently strong to affect
the vertical velocity in the upper fluid. The remaining boundary conditions on (5.17)
are hence written as u+

0 (0) = Q, v+
0 (0) = Φ, where the values of Q,Φ are determined

below. In the film-flow expansions,[
ū−, v̄−, p̄−

]
=
[(
ν−
)−1/3

u−0
(
Ȳ
)
,
(
ν−
)2/3

v−0
(
Ȳ
)
,
(
ν−
)−1/3

p−0

]
+ . . . , (5.18)

we find that

u−0 =
ik0p

−
0

ρ−

[
1
2

(
Ȳ + a

)2 − a
(
Ȳ + a

)]
, (5.19)

v−0 = − (ik0)
2p−0

ρ−

[
1
6

(
Ȳ + a

)3 − 1
2
a
(
Ȳ + a

)2
]
. (5.20)

The tangential stress at the interface in (5.19) must vanish in order to provide matching
with the leading term in ū+.



186 S. N. Timoshin

The kinematic condition satisfied for both upper and lower fluids in conjunction
with the pressure-jump value yields two relations:

Φ = −a
3k2

0

3ρ−

[
p+

0 −
(
γ1k

2
0 +

ρ− − 1

Fr1

)
Q

]
, Φ = iω1Q. (5.21)

On account of arbitrary normalization (for example, Q = 1) these can be regarded
as giving a relation between the upper-flow pressure p+

0 and the wave frequency ω1.
Then the interfacial velocities u+

0 (0) and v+
0 (0) can also be expressed in terms of ω1.

Note that the additional scaling

γ0 =
(
ν−
)−7/3

γ1, Fr0 =
(
ν−
)1/3

Fr1 (5.22)

was used for the surface tension and gravity to have the same order-of-magnitude
effect as the interfacial pressure.

The required solution for the boundary-layer equations (5.17) can be found analyt-
ically in terms of the Airy function; however for our purposes a minor adjustment of
the program used in §3 proved easier. Provided that surface tension and gravity are
negligible the effects of density and film thickness variations are eliminated from the
system by the change of variables[

k0, Ỹ , ω1, v
+
0 , p

+
0 , Φ

]
→
[
βk0, β

−1/3Ỹ , β2/3ω1, β
2/3v+

0 , β
−1/3p+

0 , β
2/3Φ

]
, (5.23)

where β = ρ−/a3. The frequency is then written in the form

ω1 =
(ρ−)2/3

a2
Ω1

(
k0a

3

ρ−

)
if γ1 = Fr−1

1 = 0, (5.24)

with Ω1 independent of ρ− or a. If, however, γ1 and especially Fr1 are retained then
the dependence on the film density becomes far more complicated.

A few examples of the growth-rate curves obtained numerically for the current
regime are shown in figure 6(a). The solution with ρ− = a = 1, γ1 = Fr−1

1 = 0
represents the function Ω1. When the film density increases, the maximum growth
rate appears at higher wavenumbers, in accord with (5.24). Gravity and surface
tension tend to suppress interfacial modes. Further comparison in figure 6(b) is made
in similarity variables. The rate of approach of the full numerical solutions of §3 to
the high-viscosity limit is slow (in order to make the limiting trends more or less
visible, computations for the full formulation had to be extended to much higher
values of ν− than those presented in figure 2h).

We conclude that the flow regime considered in this section contains the most
unstable part and the upper-branch neutral point in the interfacial wave spectrum.

5.4. The TS instability

The interfacial mode in §5.3 has increased maximum growth rates when the film
viscosity is large (see also figure 2h). The aim of this subsection is to compare
this effect with the TS-wave destabilization observed in similar circumstances in
computations of §3 (see figure 2a). In order to make a direct comparison with the
interfacial mode, the effects of surface tension and gravity are neglected here. Also
the film density is taken to be of O (1).

The key assumption in the following analysis is that the fastest growing TS
instability occurs at increased wavenumbers when ν− � 1. Then starting from the
disturbance structure described in §4.1 (for the case ν− = O (1) and k � 1) we notice
that the near-wall layer and also the viscous layer on the film side of the interface
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Figure 6. (a) Solutions of (5.17)–(5.21) with a = 1. (i) γ0 = Fr−1
0 = 0, ρ− = 1;

(ii) γ0 = Fr−1
0 = 0, ρ− = 1.5; (iii) γ0 = 0.2, Fr−1

0 = 0, ρ− = 1; (iv) γ0 = 0, Fr−1
0 = 0.2, ρ− = 1.5;

(b) Comparison between the limiting solution (5.24), ν = ∞, and the growth rates computed in the
full formulation for the film parameters ρ− = 1, γ0 = Fr−1

0 = 0, a = 1.

both have the thickness scale O
((
ν−/ω

)1/2
)

, where ω ∼ k2. Hence for a sufficiently

large film viscosity a new structure emerges as the two viscous layers fill the entire
film, that is when ν− ∼ k2. We shall verify afterwards that this new regime covers the
strongest TS instability.

In keeping with the estimates above we take

k = ε−1k0, ν− = ε−2ν−0 , ω = ε−2ω0 + ε−1ω1 + . . . , (5.25)

with k0 and ν−0 of O (1). The boundary-layer part of the disturbance is written in the
form

ū+ = A0 + εA1 + . . . , v̄+ = ε−2
(
−ik0A0Ỹ

)
+ ε−1

(
−ik0A1Ỹ + iω1A0

)
+ . . . , (5.26)

p̄+ = ε−1|k0|A0 + |k0|A1 + . . . , (5.27)

in the region Ỹ = εȲ = O (1), together with the familiar result for the leading-order
frequency, ω0 = k0|k0|. The main disturbance terms in the film-flow expansions,

ū− = u−0 + . . . , v̄− = ε−1v−0 + . . . , p̄− = ε−1p−0 + . . . , (5.28)

satisfy the equations,

−iω0u
−
0 = − ik0

ρ−
p−0 + ν−0 u

−′′
0 , ik0u

−
0 + v−′0 = 0. (5.29)

The appropriate boundary conditions are the wall constraints and the requirement of
zero interfacial shear (the latter due to the increased film viscosity), hence u−0 (−a) =
v−0 (−a) = u−′0 (0) = 0. The interfacial matching of (5.26), (5.27) with the solution for
the film yields the first frequency correction,

ω1 = −k0a

ρ−

[
1− 1

{−0 a
tanh

(
{−0 a

)]
, {−0 =

(
− ik2

0

ν−0

)1/2

. (5.30)

The imaginary part of ω1 corresponding to the TS-wave growth rate is illustrated in
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Figure 7. The scaled growth rate ω1i versus k0 from the solution (5.30) with a = 1, ρ− = 1, ν−0 = 1.

figure 7. The diagram shows a maximum in the middle of the chosen wavenumber
range.

In the unscaled variables (ω, ν−, k) the largest growth rate is estimated as ωi =

O
(

(ν−)1/2 /ρ−
)

, when k = O
(

(ν−)1/2
)
, ν− is large, and ρ− can be arbitrary but not

extremely large or small to affect the disturbance structure. If, for a given large ν−,
the wavenumber k is taken beyond the range of validity of (5.30) then the growth
rate is evaluated by the limit relations

ωi =
1

ρ−

(
ν−

2

)1/2

+ . . . when k � (ν−)1/2
, (5.31)

ωi =
a3

3ρ−ν−
k2|k|+ . . . when k � (ν−)1/2

. (5.32)

In a similar large-viscosity regime the largest growth rate of interfacial modes was
found to be of O(ρ−ν−)2/3 at k of O(ρ−ν−). Thus the interfacial waves are more
unstable; however the difference is not particularly large for moderately high values
of the film viscosity.

6. Discussion
As already mentioned in the Introduction, several high-Reynolds-number approx-

imations have been developed previously with the aim of understanding instability
mechanisms operational in two-fluid flows. The asymptotic analysis in this paper has
two main novel features. First, regardless of the asymptotic nature of our solutions,
the disturbance components in the two fluids remain fully coupled at the interface in
the sense that no further simplifications in addition to those made in the governing
equations are introduced in the interfacial conditions. As a consequence, the starting
boundary-value problem (2.15), (2.18)–(2.25) retains both the kinematic (via the in-
terfacial conditions) and the dynamic (via the momentum equations) nonlinearities
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inherent in the full Navier–Stokes formulation. At the same time the viscous/inviscid
interaction formulation proves to be sufficiently simple to allow a wide parameter
analysis at a relatively low computational expense, as we show in §3. In this respect
the model may prove useful in future nonlinear studies. An additional decoupling
between the disturbance components introduced when certain parameters of the fluids
become large or small should also be interesting to examine at a nonlinear level (see
also Tsao et al., 1997). Secondly, to capture both the TS and the interfacial instability
mechanisms within one model the interface in this study is assumed to lie within the
near-wall viscous layer. In this aspect the analysis here differs from other multi-deck
studies (see the Introduction).

The effect of the film thickness variation was almost entirely beyond the scope of
this work, although in many places it can be assessed easily from the limit solutions,
see e.g. (4.16), (5.24), (5.30). The overall impression is that the thickness effects should
be linked with the study of upper-branch instabilities and/or with the disturbance
structures arising in the continuation of the lengthscale shortening described in §§5.3,
5.4. For shorter TS waves and thinner films, for example, a generalization of the
solution in §4 is required when the film is buried in the Stokes layer; however the
same generalized solution will hold for the entire neighbourhood of the upper neutral
branch. Increased film thickness leads eventually to the short-wave critical layer being
located near or below the interface. At this stage the curvature of the mean profile
may become significant. All this is left for future study.

Numerical solutions presented in §3 indicate that in many cases the growth-
rate maxima for both the TS and interfacial instabilities are finite and they are
achieved at finite wavenumbers (e.g. in figures 2a,h, 3a,c). For such flows the temporal
development of disturbances initiated by point or distributed sources can be studied
using time-marching computations for the viscous/inviscid interaction equations. In
certain regimes, however, (see in figure 2a, the flow with λ− > 1, and also the resonant
case in figure 4a) the strongest instability is found to occur beyond the wavenumber
range covered by the present theory and therefore the initial-value analysis may prove
inadequate.

Among the main goals of this work was a comparison between the growth rates
of the TS and interfacial modes. We are not aware of any qualitative experimental
data on the transitional-flow regimes in the boundary-layer/liquid film configuration
which could be used for testing the present theory (but see below). One of the main
conclusions of this work however, namely the significance of a strong competition
between the two modes, seems to be in line with the known results for certain channel
flows (see the experimental data in Charles & Lilleleht 1965; Kao & Park 1972, and
the theory in Yantsios & Higgins 1988).

An important and rather peculiar effect found in this work is the flow destabilization
due to the closeness of growing TS and damped interfacial disturbances. A linear
resonance between the two modes was described as a possibility in Miles (1962);
however his predictions referred to destabilization of interfacial modes. We do not
observe such an effect probably because of the small film thickness assumed here. In
the current two-dimensional theory the resonant amplification is found to be most
efficient for a specific choice of the surface tension coefficient. A three-dimensional
(oblique-wave) extension of the theory should prove interesting, for then a similar
resonance is likely to occur under more natural conditions, i.e. with fixed film-flow
properties but variable wave angle. Another possibility, namely a TS/gravity mode
crossing was conjectured by Akylas (1982). Although his finite-Reynolds-number
calculation strictly requires an exact intersection of neutral curves, the actual theory
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was constructed more in the vein of an asymptotic treatment where, not dissimilar
from the results of the present paper, the resonance conditions would have to be
met only at leading order in powers of a small parameter (the inverse wavenumber
in our case). Note also that as far as infinitesimal disturbances are concerned the
distinction between capillary and gravity waves may not be evident until the scaled
surface tension and Froude number are replaced by realistic numerical coefficients.
In particular, the resonance theory of §4.3 applies also to gravity waves provided that
γ0 = 0, Fr−1

0 → ∞, and the small parameter ε is expressed in terms of the Froude
number.

Most of the experiments reported in literature deal with a turbulent main flow
and laminar or turbulent flow in the film; see, e.g., Hanratty & Hershman (1961),
Cohen & Hanratty (1965), Craik (1966), Andreussi, Asali & Hanratty (1985), Bruno
& McCready (1988). However, in qualitative agreement with the results in this
paper, mixed laminar–turbulent regimes were observed simultaneously with inter-
facial instabilities by Hanratty & Engen (1957), Charles & Lilleleht (1965), and
Kao & Park (1972) in channels and by Ludwieg & Hornung (1989) in boundary
layers. For a thin-film configuration, it appears that laminar–turbulent transition
in the main body of fluid may occur before or after initiation of interfacial in-
stabilities; however only if the film viscosity and density differ considerably from
the main-fluid parameters can the growth of turbulence be distinguished from the
activity of interfacial modes. Indeed, for order-one parameters of the two fluids
our computations in §3 predict comparable growth rates of the TS and interfacial
waves.

The set of experiments most closely related to the flow regimes in this paper is de-
scribed in Ludwieg & Hornung (1989, hereafter referred to as LH). They studied initial
stages in the formation of a skin-friction-line pattern during an oil-film visualization
experiment. In the experiment a flat plate is covered with a uniform oil film; the
film thickness before the test is h∗ = 0.015 cm, the oil viscosity µ∗oil = 2.9 g cm−1 s−1,
the surface tension coefficient γ∗ = 0.02 N m−1 (as in §2 an asterisk is used to mark
dimensional quantities). After the air flow is set up tangentially to the plate, two-
and three-dimensional ripples begin to appear on the oil surface indicating the de-
velopment of interfacial instabilities. Experimental results which will be used for
comparison with the present theory are summarised in figure 4 of LH, the case of a
pure laminar boundary layer with the air speed 36 m s−1.

The flow parameters in the experiment suggest that the waviness at the interface
is due to the long-wave interfacial mode described in §5.2. The Reynolds number
in the air flow is ReLH = U∗δ∗/ν∗air = 2000, where δ∗ is the dimensional boundary-
layer thickness. Since, according to LH, the Mach number in the flow is . 0.25,
it seems reasonable to take the standard data at 20◦C for the air density ρ∗air =
1.205× 10−3 g cm−3 and kinematic viscosity ν∗air = 0.15 cm2 s−1 (these parameters are
not given in LH). The boundary-layer thickness is then evaluated as δ∗ = 0.083 cm.
For the unperturbed boundary layer LH use a Pohlhausen polynomial approximation
with the scaled wall shear equal to 2. Hence the dimensional boundary-layer thickness
may be written in the form

δ∗ =
2

0.332
L∗Re

−1/2, (6.1)

where L∗ is the distance from the leading edge to the observation station and
Re = U∗L∗/ν∗air is the Reynolds number used in this paper. The number coefficient in
(6.1) is introduced in order to rescale the wall shear given by LH to the Blasius-flow



Instabilities in a boundary layer on a film-coated surface 191

value λ+ = 0.332. With the estimate for the boundary-layer thickness given above the
relation (6.1) provides the values,

L∗ = 4.59 cm, Re = 110227 (6.2)

for the distance from the leading edge and the Reynolds number respectively.
For the comparison the disturbance wavelength experimentally measured in LH

and the corresponding result of our theory are converted into dimensional form. A
cloud of experimental dots in figure 4 of LH can be characterized by

α+ ≈ 0.035, 12.65 . h+ . 31.65, 1800 . σ+ . 3500. (6.3)

Here α+, h+, σ+ are non-dimensional parameters defined by the system of relations
(18) in LH. From the first two equations of that system we find that the dimensional
disturbance wavenumber α∗ and the film thickness h∗ are related by α∗h∗ = α+h+.
Hence, using (6.2) and the estimate h∗ = 0.015 cm for the film thickness, the dis-
turbance wavenumber can be put in the range 29.52 . α∗ . 73.85 cm−1, that is the
dimensional wavelength λ∗ = 2π/α∗ is evaluated as

0.085 . λ∗ . 0.213 cm. (6.4)

A somewhat different estimate follows from the first and third relations in (18) of LH
which can be combined into α+/σ+ = α∗ν

2
∗airρ∗air/ (2γ∗). Using the parameter ranges

(6.3) and the standard air density and viscosity we obtain that

14.75 . α∗ . 28.687 cm−1, 0.219 . λ∗ . 0.425 cm. (6.5)

We were unable to find the source of such a big difference between the two estimates
(6.4) and (6.5), nor could we decide which of the two provides a better representation
of the experimental measurements. The discrepancy may be due to our choice of the
air parameters, to the interpretation of the film thickness as that before the test, or
to some other factors. This introduces some uncertainty in the following calculation;
nevertheless we shall proceed on the assumption that the estimates above reproduce
the true orders of magnitude of the measured quantities.

Following the normalization introduced in §2 we find that in our notation γ =

0.000279, ε0 = Re−1/8 = 0.2343, and then γ0 = γε−3
0

(
λ+
)5/4

= 0.00547, where the
Blasius-flow wall shear λ+ = 0.332 is included on account of the affine transformation
(2.26). The scaled film thickness is then evaluated as a = h∗L

−1
∗ ε
−5
0

(
λ+
)3/4

= 2.0256.
The disturbance growth rates were computed from the limit relation (5.14) and, for
an independent verification, from the full formulation (3.3)–(3.8). The results are
shown in figure 8, the solid and dashed curves, respectively. Note that the dashes are
drawn for three almost indistinguishable solutions corresponding to the oil density
ρ∗oil = 0.1, 1 and 10 g cm−3. In all three cases the limit formula (5.14) gives a good
approximation to the full solution. The maximum at kmax ≈ 5.945 in figure 8 provides
the wavenumber of the most amplified disturbance. The corresponding dimensional

wavelength λ∗ = L∗ε
3
0

(
λ+
)−5/4

2π/kmax is then found to be λ∗ ≈ 0.245 cm. This
theoretical value is just above the range (6.4) and falls within the bounds of (6.5).
Keeping in mind the approximate nature of our theory the agreement seems to be
encouraging.

On the qualitative side another observation deserves a brief mention here. In the
experiment the laminar–turbulent transition in the air boundary layer starts as an
abrupt three-dimensional process by-passing the usual long and slow route of initially
two-dimensional TS-wave amplification. This points to the significance of shorter-
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Figure 8. The growth rate ωi versus k for the experimental conditions in LH. Solid line: the limit
formula (5.14); three dashed curves were plotted in the figure for the full triple-deck solutions with
various densities of the oil film.

scale dynamics in the transitional boundary layer, in agreement with the theoretical
conclusion that the most amplified TS waves on very viscous films have a considerably
reduced wavelength; see §5.4. Further theory and experiment are required in order to
be more specific on this score.

The author is grateful to the participants of the Applied Mathematics Seminar
of Hull University for a fruitful discussion, especially on the applicability of the
present and related models to condensation problems, to Professors S. N. Brown and
F. T. Smith and Drs R. I. Bowles and S. J. Clarke for their attention to this work and
frequent advice, and to the referees for many helpful comments and suggestions.

Appendix. Numerical method
Eliminating ū± from the momentum equations and making the substitutions

v̄+ = −ikȲ +N+ + v̂+
(
Ȳ
)
, v̄− = L−z +N− + v̂− (z) , (A 1)

N+ = N− = −ikp̄+ − i (ku00 − ω) , L− = −i (ku00 − ω)−1

[
k2

ρ−
p̄− − ikλ−N−

]
, (A 2)

with the new variable z = −Ȳ introduced for the film flow, the controlling equations
and the end-point conditions are written in the form

v̂+′′′ = i
(
kȲ + ku00 − ω

)
v̂+′ − ikv̂+, when Ȳ > 0; v̂+ (∞) = v̂+′ (∞) = 0; (A 3)

ν−v̂−′′′ = i (−kλ−z + ku00 − ω) v̂−′ + ikv̂−, when a > z > 0;

v̂− (a) = −N− − aL−, v̂−′ (a) = −L−;

}
(A 4)
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for the upper and lower fluids, respectively. The interface conditions are

p̄+ − p̄− = −
(
γ0k

2 +
1− ρ−
Fr0

)
N+ + v̂0

i (ku00 − ω)
, (A 5)

v̂+ (0) = v̂− (0) = v̂0, (A 6)

ε1 = 0, ε2 = 0, (A 7)

where

ε1 = v̂+′′ (0)− ρ−ν−v̂−′′ (0) ,

ε2 =
1− λ−

i (ku00 − ω)

(
v̂0 +N+

)
− 1

ik

(
v̂+′ (0) + v̂−′ (0) + L− − ik

)
,

 (A 8)

and v̂0 is the (unknown) common velocity of the two flows at the interface.
The condition Ā = 1 was used to normalize the eigensolution, giving also p̄+ = |k|.

To start iterations at a chosen value of the wavenumber, initial guesses are made
on the complex frequency ω and on the interface velocity v̂0. With the constants
N,L, p̄− determined by (A 2), (A 5), equations (A 3), (A 4) are solved with (A 6) as two
independent boundary-value problems, using a simple second-order-accurate routine.
First and second derivatives of v̂± are then evaluated at the interface and Newton’s
corrections to the frequency and interface velocity are obtained from a linearized
form of (A 7).

Initial guesses are made using asymptotic solutions of §4 and 5, or from the known
results for a single-fluid flow. In many cases an approximate value of the frequency
and a fairly arbitrary choice for v̂0 were sufficient to start iterations for moderate
values of the parameters, although in extreme cases, especially for large wavenumbers,
parametric marching along solution curves was found necessary.
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